Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Formaldehyde 2,4-dinitrophenylhydrazone

Abdassalam Abdelhafiz Tameem,^a Abdussalam Salhin,^a‡ Bahruddin Saad,^a Ismail Ab. Rahman,^a Muhammad Idiris Saleh,^a Shea-Lin Ng^b and Hoong-Kun Fun^b*

^aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia

‡ Additional correspondence author: e-mail: abdussalam@usm.my

Correspondence e-mail: hkfun@usm.my

Key indicators

Single-crystal X-ray study T = 100 KMean σ (C–C) = 0.002 Å R factor = 0.038 wR factor = 0.108 Data-to-parameter ratio = 17.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. In the title compound, $C_7H_6N_4O_4$, the molecule is essentially planar and the nitro groups are nearly coplanar with the benzene ring. The crystal structure is stabilized by intermolecular $C-H\cdots O$, $N-H\cdots O$ and $C-H\cdots N$ interactions, as well as by short $O\cdots O$ and $O\cdots N$ contacts. Received 22 November 2006 Accepted 25 November 2006

Comment

2,4-Dinitrophenylhydrazone derivatives are widely used in various forms of analytical chemistry (Lamberton *et al.*, 1974; Pötter *et al.*, 1997; Zegota, 1999; Cordis *et al.*, 1998; Zlotorzynska & Lai, 1999) and are also used as dyes (Guillaumont & Nakamura, 2000). Structurally, they are found to exist as both *E*- and *Z*-stereoisomers (Uchiyama *et al.*, 2003). The title compound, (I), was first reported by Clark *et al.* (1946) but its single-crystal X-ray structure has not been established. Continuing our investigations into the complexation properties of dinitrophenylhydrazine, DNPH, with carbonyl compounds (Tameem *et al.*, 2006), we report here the structure of compound (I), the product of the reaction of DNPH with formaldehyde.

Bond lengths and angles in (I) (Fig. 1) have normal values (Allen *et al.*, 1987) and agree well with those found in related

Figure 1

© 2007 International Union of Crystallography All rights reserved

The molecular structure of (I), showing 50% probability displacement ellipsoids and the atomic numbering. Dashed lines indicate intramolecular hydrogen bonds.

Figure 2

The crystal packing of (I), viewed down the *a* axis. Hydrogen bonds are shown as dashed lines.

structures (Fronczek, 1994). The molecule is approximately planar, with a maximum deviation of 0.270 (1) Å from the molecular plane for atom O1. The nitro groups at C1 and C3 are almost coplanar with the attached ring [O1-N1-C1-C6 $= -12.3 (2)^{\circ}$ and $O3-N2-C3-C2 = 7.2 (2)^{\circ}$, as is the hydrazine group, with out-of-plane distances for atoms N3, N4 and C7 of -0.031 (1), 0.040 (1) and 0.157 (1) Å, respectively. In the crystal structure of (I), intermolecular $N-H \cdots O$ and $C-H\cdots O$ hydrogen bonds (Fig. 2, Table 1) form sheets parallel to the (120) plane. In addition, relatively short $01 \cdots 01^{i}$ [2.7258 (12) Å], $O1 \cdot \cdot \cdot O1^v$ [2.8819 (12) Å], $O2 \cdots O3^{vi}$ [2.8779 (12) Å] and $O1 \cdots N1^{i}$ [2.9467 (12) Å] contacts further stabilize the crystal packing [symmetry codes:

Experimental

Compound (I) was prepared as described by Clark et al. (1946). Crystals suitable for X-ray diffraction analysis were grown by slow evaporation of a saturated solution of compound (I) in an ethanolacetonitrile solvent mixture (1:1).

 $V = 423.02 (2) \text{ Å}^3$

 $D_x = 1.650 \text{ Mg m}^{-3}$

 $0.35 \times 0.18 \times 0.10 \text{ mm}$

Mo $K\alpha$ radiation

 $\mu = 0.14 \text{ mm}^{-1}$

Block, yellow

T = 100.0 (1) K

Z = 2

(i) -x, -y, 1 - z; (v) 1 - x, -y, 1 - z; (vi) 1 - x, 1 - y, 1 - z].

Crystal data

 $C_7H_6N_4O_4$ $M_r = 210.16$ Triclinic, P1 a = 4.2482 (1) Å b = 9.7774 (2) Å c = 10.3407 (2) Å $\alpha = 86.825 \ (1)^{\circ}$ $\beta = 83.966 (1)^{\circ}$ $\gamma = 82.413 (1)^{\circ}$

Data collection

Bruker SMART APEXII CCD	14315 measured reflections
area-detector diffractometer	2447 independent reflections
ω scans	2027 reflections with $I > 2\sigma(I)$
Absorption correction: multi-scan	$R_{\rm int} = 0.033$
(SADABS; Bruker, 2005)	$\theta_{\rm max} = 30.0^{\circ}$
$T_{\text{min}} = 0.953$ $T_{\text{max}} = 0.987$	

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.056P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.038$	+ 0.0932P]
$wR(F^2) = 0.108$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.06	$(\Delta/\sigma)_{\rm max} < 0.001$
2447 reflections	$\Delta \rho_{\rm max} = 0.38 \ {\rm e} \ {\rm \AA}^{-3}$
140 parameters	$\Delta \rho_{\rm min} = -0.27 \text{ e} \text{ \AA}^{-3}$
H atoms treated by a mixture of	
independent and constrained	
refinement	

Table 1			
Hydrogen-bond	geometry	(Å,	°)

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N3-H3A···O1	0.849 (17)	2.03 (2)	2.623 (1)	126 (1)
$C5-H5A\cdots N4$	0.93	2.41	2.743 (2)	101
$N3-H3A\cdotsO1^{i}$	0.849 (17)	2.49 (2)	3.271 (1)	153 (2)
$C2-H2A\cdots O3^{ii}$	0.93	2.59	3.498 (1)	164
$C4-H4A\cdots O4^{iii}$	0.93	2.54	3.346 (2)	145
$C7-H7A\cdotsO1^{i}$	0.97	2.60	3.425 (1)	143
$C7 - H7B \cdots N4^{iv}$	0.96	2.59 (2)	3.373 (2)	138

Symmetry codes: (i) -x, -y, -z + 1; (ii) -x + 2, -y + 1, -z + 1; (iii) -x + 2, -y + 1, -z; (iv) -x, -y, -z.

The H atom on N3 was located in a difference map and refined isotropically, with N-H = 0.849 (17) Å. The remaining H atoms were positioned geometrically and treated as riding, with C-H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$.

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 1998); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

The authors thank the Malaysian Government for providing a SAGA grant (No. 304/PKIMIA/653010/A118), and Universiti Sains Malaysia for a Short-Term Grant, which have made this work possible.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.

Bruker (2005). APEX2 (Version 1.27), SAINT (Version 7.12a) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.

Clark, G. L., Kaye, W. I. & Parks, T. D. (1946). Ind. Eng. Chem. 18, 310-313.

Cordis, G. A., Das, D. K. & Riedel, W. (1998). J. Chromatogr. A, 798, 117-123. Fronczek, F. R. (1994). Acta Cryst. C50, 122-124.

Guillaumont, D. & Nakamura, S. (2000). Dyes Pigm. 46, 85-92.

Lamberton, J. A., Nelson, E. R. & Triffett, C. K. (1974). Aust. J. Chem. 27, 1521-1529

Pötter, W., Lamotte, S., Engelhardt, H. & Karst, U. (1997). J. Chromatogr. A, 786, 47-55.

Sheldrick, G. M. (1998). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Tameem, A. A., Salhin, A., Saad, B., Rahman, I. Ab., Saleh, M. I., Ng, S.-L. & Fun, H.-K. (2006). Acta Cryst. E62, 05686-05688.

Uchiyama, S., Ando, M. & Aoyagi, S. (2003). J. Chromatogr. A, 996, 95-102. Zegota, H. (1999). J. Chromatogr. A, 863, 227-233.

Zlotorzynska, E. D. & Lai, E. P. C. (1999). J. Chromatogr. A, 853, 487-796.